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Prelude
We will start with the conception of instantons as a Quantum
Mechanical notion, and proceed to promote many of these
properties into a field theoretic context.

Notation: We will spend most of our time exploring Euclideanized
versions of concepts, and will employ a continuation into
Minkowski space via the Wick rotation x0 = i x4, where x4 will
represent the Euclidean time, usually taken from [−T/2,T/2].
The Euclidean metric will simply be diag(1,1,1,1), and the
Minkowski metric diag(1,-1,-1,-1), as usual. We will be considering
Euclideanized path integrals:

〈xf | e−HT |xi 〉 = N

∫
Dx e−S/~ =

∑
n

e−EnT/~ 〈xf |n〉 〈n|xi 〉 (1)

where Dx (often written [dx ]) is the path integral measure.



Why bother?

We bother because I prefer passing this course to the alternative.

Jest aside, note that we wish to consider quantum mechanical
results in the context of QFTs. However, one of our primary tools
in QFT, perturbation theory, fails to incorporate many of these
effects, such as tunnelling, domain walls, flux tubes and the like.
Instantons will address some non-perturbative phenomena, and can
be applied to the study of tunnelling behaviour and offer insight
into quantum corrections to the classical.



What are instantons, and where can I find them?

Instantons are simply solutions to the classical equations of motion
that arise from an action describing our theory. They are localised
objects, much like solitons, but last only for an instant unlike
them, granting them their name (unless one wishes to abide by
Polyakov’s choice of ”pseudoparticles”).

We can find them in simple tunnelling phenomena, and given a
specific problem, they can be explicitly constructed. Let us do so.



Well well, what do we have here? I

The title may have tipped the pun-inclined to our first topic of
consideration: the even double well potential:

Figure: The Double Well



Well well, what do we have here? II

Let us assume that we find the minima at x = ±a, where the
potential is vanishing (it can be shifted by an arbitrary constant if
not).
We are interested in tunnelling phenomena, which allow us to
move between the minima. Therefore, we must compute the value
of the tunnelling amplitude:

〈a| e−HT/~ |−a〉 = 〈−a| e−HT/~ |a〉 (2)

This will be done by approximating the functional integral with the
semi-classical limit (that contains O (~) corrections).
Classically- vanishing energy solution to the EoM:

˙̄x =
√

2V ⇔ t = t1 +

∫ x

0
dx ′

1√
2V

(3)



Well well, what do we have here? III

Figure: An Instanton with Centre t = t1



Well well, what do we have here? IV

The action for such an instanton, using (3) is then:

S0 =

∫
dt

(
dx

dt

)2

=

∫ a

−a
dx
√

2V (4)

For very large times, x ∼ a, which implies ẋ ≈ ω(a− x), solving
approximately to give (a− x) ∝ e−ωt .

Instanton size: O
(

1
ω

)
- ”well” localised in time

We could have tunnelled from a to −a instead: anti-instanton



The Action Principles I

For the classical path x̄ between −a and a:
Stationary points of the action, δS

δx̄ = −¨̄x + V ′(x̄) = 0.

Path integral: by using x = x̄ + cnxn, for some orthonormal basis
of {xn} that are eigenvectors of the extremization operation:

−ẍn + V ′′(x̄)xn = λnxn

The path integral measure is proportional to
∏

n dcn. The
orthonormality allows us to make the path integral a product of
Gaussians corrected by orders of ~. Then,

〈−a| e−HT/~ |a〉 = Ne−S[x̄]/~
∏
n

λ
−1/2
n (1 +O (~)) (5)



The Action Principles II

The product of eigenvalues is the determinant of the operator:∏
n λ
−1/2
n = det[−∂2

t + V ′′(x̄)]−1/2

I will, without proof, state the result of such a determinant, with a
specific normalisation choice:

N2 det[−∂2
t + V ′′(x̄)] = π~ψ0(T/2) (6)

where ψ0 is an eigenfunction of the operator with eigenvalue 0
(classical resonant frequency). In the case of the S.H.O (which the
instanton approximates roughly over long times), V ′′(x̄) = ω2, and:

ψ0 =
1

ω
sinh (ωt + ωT/2)



The Action Principles III

We can make use of this, since we are considering a large time
scale ωT � 1. If not for the instanton, we would be stuck at the
bottom of a well, so V ′′ ≈ ω2 may be used. Thus, we may state
the result of the determinant approximately, given that the
instanton size is O (1/ω):

N det[−∂2
t + ω2]−1/2 =

( ω
π~

)1/2
e−ωT/2 (7)

which implies

〈a| e−HT/~ |−a〉 = e−S[x̄]/~
( ω
π~

)1/2
e−ωT/2 (1 +O (~)) (8)

Comparing this to (1), since the ground state contributes the most
for large times, we get E0 = ~ω/2 for the H.O.



Other Soltuions

Is the solution we have identified unique?
No. How about −a→ a→ −a→ a?

Figure: Other Paths

Since they’re well localised in time, the transitions get compressed
→ step functions.
These other solutions correspond to approximate stationary points
in the action.



The Functional Integration I

Why restrict ourselves to 2 jumps? We may go for n such jumps.
Assume wide separation - dilute gas approximation: S = nS0.

By the wide separation, we know that most of the time is spent in
a well, not tunnelling =⇒ V ′′ ≈ ω2 holds. Thus, the determinant
is almost identical, but gets corrected by a factor (call it K ) for
each instanton. Thus,

N det[−∂2
t + ω2]−1/2 =

( ω
π~

)1/2
e−ωT/2Kn (9)

Path integration: we must be able to integrate over the centres of
the instantons: ∫ T/2

−T/2
dt1

n∏
j=2

∫ tj−1

−T/2
dtj =

T n

n!



The Functional Integration II

Finally, recall that an instanton tunnels from −a to a, and
vice-versa for an anti-instanton. Thus, tunnelling amplitudes
consider only n odd. Given this,

〈a| e−HT/~ |−a〉 =
( ω
π~

)1/2
e−ωT/2

∑
n odd

(Ke−S0/~T )n

n!
(1 +O (~))

(10)
The sum resolves into a sinh of the arguments raised to the nth

power. Had we been looking for the amplitude of staying in a
minimum, we would sum over even n, and arrive at a cosh
solutions.
Comparing this to (1), we note that the energy eigenvalues are
E± = ~ω/2± ~Ke−S0/~. The instanton correction is then
immediately apparent.



The Functional Integration III

Note that K marks the deviation of our potential from being an
exact H.O. However, by time translation invariance, the operator

−∂2
t +V ′′(x̄) has a zero eigenvalue, corresponding to x1 = S

−1/2
0

˙̄x .

In this case, Dx =
∏

n dcn/(2π~) will produce a change with
respect to changing c1 as well. The corresponding instanton has a
centre at t1, which we integrated over. Using this,
dx = (dx̄/dt)dt1. But if we only change c1, dx = x1dc1. Matching
these, in evaluating the determinant, eigenvalues of 0 give a
contribution of (2π~)−1/2dc1/dt1 = S0/

√
2π~. Thus, we get

K =
S0√
2π~

∣∣∣∣ det[−∂2
t + ω2]

det/0[−∂2
t + V ′′(x̄)]

∣∣∣∣1/2

(11)

where det/0 skips the 0 eigenvalue. We have computed a QM
instanton correction!



A Few Comments I

Loosely speaking, such tunnelling behaviour usually implies
instability, which marks an a non-zero imaginary part of E0,
corresponding to the lifetime of the state. In fact, this IS the
correction to the energy: Im[E0] = 1

2~|K |e
−S0/~.

The dilute gas approximation modulates this instability. Should
instantons not be well separated, we must then account for effects
that come from their interactions (i.e. S 6= nS0). This would
produce greater contributions to the suppression of the lifetime,
but, in return, would be suppressed by the low probability of
closely spaced instantons.

Should we be interested in the a potential with infinitely many
equally spaced minima, the number of instantons and



A Few Comments II

anti-instantons are not constrained. Thus, to jump to the
minimum |xi 〉 m minima away, from |xi−m〉 ≡ |xk〉,

〈xi | e−HT/~ |xm〉 =
( ω
π~

)1/2
e−ωT/2

∑
n,n̄

(Ke−S0/~T )n+n̄

n!n̄!
δ(n−n̄)−m

(12)
This can be resolved with the identity

δjk =
1

2π

∫ 2π

0
e i θ(j−k)

to produce

〈xi | e−HT/~ |xk〉 =
( ω
π~

)1/2
e−ωT/2

∫ 2π

0
e imθ

dθ

2π
exp 2KT cos θe−S0/~

(13)



Gauged Field Theories: A Prelude I

Our discussion will primarily focus on su(N) algebras for the
theories, but the results will can be extended to other Lie algebras
corresponding to some compact Lie group G . We use generators
corresponding to:

[T a,T b] = cabcT c (14)

We define the normalised Cartan inner product as:

〈T a,T b〉 = δab (15)

For su(2), cabc = εabc , and the isospinor representation presents
T a = −iσa/2. The Cartan inner product is then −2Tr[T aT b].

We further consider the gauge fields corresponding to the
generators Aa

µ. It is convenient to deal with them in a fixed T a



Gauged Field Theories: A Prelude II

basis: Aµ ≡ gAa
µT

a. This also provides us the field strength tensor
(FST):

Fµν = ∂[µAν] + [Aµ,Aν ]

We will consider the free theory, with a Euclidean action of the
form:

S =
1

4g2

∫
d4x〈Fµν ,Fµν〉 (16)

For a complete definition, we must also define gauge
transformations, and the affine connection1 (covariant derivative):

DσFµν = ∂σFµν + [Aσ,Fµν ]

A gauge transformation is a map Ω : R4 → G , or more generally,
with a space-time manifold M, Ω : M → G . In our algebra, this is
realised by the exponential map, and can be made explicit



Gauged Field Theories: A Prelude III

Ω(x) = exp (αa(x)T a) (17)

Under such a transformation, we have:

Aµ → Ω(Aµ + ∂µ)Ω−1, Fµν → ΩFµνΩ−1 (18)

A vanishing Fµν implies that Aµ is a gauge transform of 0, and
can be expressed as Ω∂µΩ−1. Given a field that transforms as
φ→ Ωφ, we express the covariant derivative explicitly:

Dµφ = ∂µφ+ Aµφ

1This doesn’t require a prescribed metric, but given one, we may construct
a frame bundle with a connection.



The Finite Action

We will study field configurations that leave the action finite, to be
able to find semi-classical approximations to the path integral
(e−S/~). Gaussian approximations centred around infinite
configurations gives us a vanishing result.

To keep the action finite at large r ≡ |x |, Fµν must go as O
(
1/r3

)
at most, as a dimensional analysis of (16) would tell us. It must
then go to 0 at the boundary. However, the same need not be true
for Aµ, since it can simply be a gauge transformation of 0. Thus,
for some Ω, Aµ = Ω∂µΩ−1 +O

(
1/r2

)
.

Thus, each finite action gauge configuration corresponds to an Ω:
a map from S3 → G , where S3 is understood as the spherical
boundary of the space-time manifold at the radial infinity.



The Homotopy of the Configuration I

The choice of the configuration mapping is not gauge-invariant.
We may employ another gauge transformation, Υ, and transform
Aµ as per equation (18). This is equivalent to
Ω→ ΥΩ +O

(
1/r2

)
.

However, Υ = Ω−1 isn’t always possible. This gauge
transformation must be a continuous function in orthogonal radial
slices over r = 0 to r →∞. At the origin, Υ must be independent
of angular variables, i.e. a constant (set it to 1, and any other
constant is a trivial transformation away). Thus, any acceptable
configuration of infinity must be continuous deformation of Υ = 1,
i.e. homotopic to the constant map.
Thus, we can only map a finite action gauge configuration to
another within the same homotopy class.



An Example: su(2)

Hereafter, I will not differentiate between the algebra and the
group SU(2).

SU(2) can be represented as unitary unit-determinant matrices,
and can be parametrized completely by:

Ω = a + i bkσ
k (19)

with a2 + b2 = 1. Thus, SU(2) is homeomorphic to S3, and our
study will pertain to homotopy classes of mappings S3 → S3. Let
us define some maps to parametrize the entire homotopy class:

1. Trivial map: Ω(0)(x) = 1

2. Identity map: Ω(1)(x) = (x4 + i xkσ
k)/r

3. ”ν-map”: Ω(ν)(x) = Ω(1)(x)ν



A Circular Argument I

It is hard to identify or visualise this for a hyper-sphere, so let us
consider the U(1) analogue to these maps. Since U(1) is
homeomorphic to S1, the ”ν-map” is γ(ν)(θ) = e i νθ, for
θ ∈ (−π, π].
Any map from S1 to S1 can be continuously deformed to a set
number of ”windings” around the origin:

Figure: Winding Number of Maps to S1



A Circular Argument II

The winding number in the U(1) case can also be thought of as
the number of times one wraps around a pole at a point; i.e. for
some contour C expressed by a map S1 → S1,

ν =
1

2πi

∮
C

dz

z − 0

We may reparametrize this integral for γ ∈ {γ(ν)} to put it in the
U(1) context:

ν =
i

2π

∫ 2π

0
dθ γ

d

dθ
γ−1 (20)

If we deform the map γ slightly, by δγ, the δν corresponds to the
integral of δ(γ d

dθγ
−1) = −i dδγdθ , a vanishing quantity. Any number

of continuous deformations will leave ν unchanged.



su(2) I

The winding number in the higher dimensional case is given by:

ν =
1

48π2

∫
dθ1dθ2dθ3 ε

ijk〈Ω∂iΩ−1,Ω∂jΩ
−1Ω∂kΩ−1〉 (21)

where the integration is over angles parametrizing2 S3. For the
trivial map, clearly the integrand vanishes ∂i1 = 0, and ν = 0 is
restored. In the ν = 1 case, Ω∂iΩ

−1 = −iσi . Further,
Tr [εijkσiσjσk ] = −12, which implies a Cartan inner product of
(−2) · (−12) = 24. The area of a unit 3-sphere is 2π2. Thus, Ω(1)

does correspond to ν = 1.

If Ω = Ω1Ω2, ν = ν1 + ν2. This can be understood in the U(1)
case as e imθe i nθ = e i (n+m)θ. This gives us the rest of the winding
numbers inductively. Thus, we may label each homotopy class by
the winding number.



su(2) II

Let us now consider a different expression for the winding number.

The Hodge dual is given by F̃ρσ ≡ 1
2ερσµνF

µν . This is another
term that could have been placed in the Lagrangian density. To
see why not, define Gµ ≡ 2εµνρσ〈Aν , ∂ρAσ + 2

3AρAσ〉. It is easy to

compute: ∂µG
µ = 〈F , F̃ 〉, which is a total divergence and would

naively be removed. However, we may rework (21) to give

ν =
1

32π2

∫
d4x〈F , F̃ 〉 (22)

Clearly, this term (θ term in QCD) contains some important
information about the configuration of our gauge. We conclude
the treatment of homotopy classes in su(2) with a small goody: as
long as the Cartan inner product is normalised to the identity, all
of the computations apply to any simple Lie group.

2Changing parametrizations, the Jacobian is cancelled by the ε determinant.



Gauged QFT Vacua I

We now promote our classical discussion to a quantized
formulation.

First, we wish to continue our treatment of finite action
configurations. Let us work in a box of size (T ,V ≡ L3), and in
the axial gauge A3 = 0. To find the restrictions on allowed
configurations, consider the surface term in the variation of the
action upon varying Aµ:

δS =

∫
d3SnµFµνδA

ν + . . .

where d3Snµ is the oriented surface element of the box. By the
antisymmetric nature of F , the normal part of Aµ doesn’t
contribute.



Gauged QFT Vacua II

The tangential components should match the axial gauge
condition and must be kept finite as V ,T →∞.

In other words, the configuration should belong to a fixed
homotopy class as we take the box to infinity. This is the only
remnant of the boundary conditions of the now infinite box. Thus,
we may dispense with the box altogether, and simply integrate
over a fixed winding number, ”n”:

F (V ,T , n) = N

∫
DAµe−Sδνn (23)

where F is some transition matrix element between states
(determined by boundary conditions).



Gauged QFT Vacua III

For large times T1 and T2, we expect contributions from different
winding numbers:

F (V ,T1 + T2,V , n) =
∑

n1+n2=n

F (V ,T1, n1)F (V ,T2, n2) (24)

where n in a large box may come from one configuration class n1

in one part of the box, and n − n1 in the other, since the winding
number relates to the integration of a local (θ term) density.

However, we expect a simple exponential element for a single
energy eigenstate, as equation (1) suggests. Over several large time
slices, we expect a product of these objects, and not a convolution.
There is an easy way to deconvolve: Fourier transforms:

F (V ,T , θ) ≡
∑
n

e i nθF (V ,T , n) = N

∫
DAµe−Se i νθ (25)



Gauged QFT Vacua IV

We may now identify F (V ,T , θ) as an expectation of e−HT for
some energy eigenstate, |θ〉, the θ-vacuum:

F (V ,T , θ) ∝ 〈θ| e−HT |θ〉 = N ′
∫
DAµe−Se i νθ (26)

This implies the importance of an inclusion of the θ term to the
Lagrangian density.



Gauged QFT Instantons I

We may now use the knowledge of the vacuum as well as the
tunnelling principles we had discussed quantum mechanically to
calculate some basic quantities, such as the vacuum expectation
value and energy.
Let each instanton action be denoted S0, a finite quantity. We will
consider approximate solutions as we did in the case of the infinite
minima potential, widely separated, with n instantons and n̄
anti-instantons. These approximate solutions have ν = n − n̄. We
may then use (12):

〈θ| e−HT |θ〉 ∝
∑
n,n̄

(VTKe−S0)n+n̄

n!n̄!
e i (n−n̄)θ = exp 2KVTe−S0 cos θ

(27)
We may then find the energy density of the vacuum by comparing
this to (1):



Gauged QFT Instantons II

E (θ)

V
= −2Ke−S0 cos θ (28)

This shows us that the vacua are indeed distinct, and possess
different energy densities.

Let us attempt to compute the vev of the θ operator:
〈θ| 〈F (x), F̃ (x)〉 |θ〉. Since this is a translational invariant, we may
simply average over all space. We have observed that the path
integral (with explicit normalisation) (cf. (26)) is given by:

1

VT

∫
d4x 〈θ| 〈F (x), F̃ (x)〉 |θ〉 =

32π2

VT

∫
DAµ νe−Se i νθ∫
DAµ e−Se i νθ

(29)



Gauged QFT Instantons III

We may rephrase this as a logarithmic derivative to make the
computation easier to process:

〈θ| 〈F (x), F̃ (x)〉 |θ〉 = −32π2i

VT

d

dθ
ln

(∫
DAµ e−Se i νθ

)
(30)

The argument of the logarithm is a known quantity, and is given in
(27). Thus, the expectation of the operator is:

〈θ| 〈F (x), F̃ (x)〉 |θ〉 = −64π2i Ke−S0 sin θ (31)

With this, we conclude that these distinct vacua all correspond to
a different vev of the θ operator, and gathers a contribution from
the instantons.



Closing Comments I

We left the instanton action in without computing it. How is this
found?
Cauchy-Schwarz inequality: 〈u, v〉 ≤

√
〈u, u〉〈v , v〉

=⇒
∫

d4x〈F ,F 〉 =

√∫
d4x〈F ,F 〉

∫
d4x〈F̃ , F̃ 〉 ≥ |

∫
d4x〈F , F̃ 〉|

S ≥ 1

4g2
|32π2ν|

The equality is asserted iff F = ±F̃ , a first order ODE. These
inequalities can be used to find minimal action configurations in a
homotopy class. For example S0 = 8π2/g2.

When we discussed gauge configurations, we spoke of summing
over different winding numbers in different space-time sectors.
However, we have neglected contributions on the boundary of each



Closing Comments II

part, where the action might be especially dense. A small
argument for this is that taking the box to infinity suppresses these
boundary terms relative to the bulk of the manifold.

Instantons have many other uses such as the computation in
vacuum energy shifts given charge configurations, explaining the
mass of the η′ (QCD axial current anomaly), and simply
understanding the vacuum structure of theories such as QCD.



Thank you

Thank you for your patience during this presentation. It has been a
weird quarter, but an awesome course.
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